Полосатое тело помогло диагностировать шизофрению автоматически
Ang Li et al. / Nature Medicine, 2020
Ученые из Китая разработали алгоритм, который на основании особенностей активности полосатого тела диагностирует шизофрению с точностью более 80 процентов.
- Симптомы нарушения работы базальных ядер
- Диагностика и прогноз патологии
- Что собой представляют базальные ядра
- Ствол мозга
- Как развивается средний мозг
- Физиология
- Патологии при поражении
- Функции
- Патологические состояния базальных ядер
Также этот анализ позволяет прогнозировать восприимчивость пациента к терапии антипсихотическими препаратами.
Аномалии функционирования полосатого тела коррелируют с работой дофаминергическиой системы и экспрессией генов, которые связаны с риском развития шизофрении. в журнале Nature Medicine
.
Диагностирование шизофрении осложняется очень широкой симптоматикой и тем, что причины этого заболевания изучены слабо. Основная гипотеза о механизме шизофрении заключается в нарушении дофаминового баланса.
Дофамин — нейромедиатор с широким спектром функций, он тесно связан с системой поощрения в мозге.
При шизофрении в основном назначают антипсихотики, которые блокируют дофаминовые рецепторы и снижают активность этого медиатора.
Ученые полагают, что структура, которая играет центральную роль в развитии шизофрении — это полосатое тело, — группа базальных ядер полушарий головного мозга. У больных в этой структуре зачастую повышена дофаминергическая активность.
Ань Ли (Ang Li) и его коллеги из Китайской академии наук решили использовать аномалии функционирования полосатого тела как маркер для диагностики шизофрении. Для этого провели фМРТ мозга 560 больным шизофренией и 540 здоровым людям.
Затем ученые обучили классификатор на основе метода опорных векторов определять диагноз (здоров или болен шизофренией) по трем характеристикам работы полосатого тела: амплитуде низкочастотных колебаний, активности связей внутри полосатого тела и с внешними структурами мозга (всего более 12 тысяч элементов).
Кроме того, ученые провели перекрестную проверку алгоритма, протестировав его на данных из разных медицинских центров и разных аппаратов МРТ.
Также вычислили и коэффициент аномальности полосатого тела для пациентов с другими психическими заболеваниями.
Ученые проверили, связаны ли отклонения работы полосатого тела с повышением активности дофаминергической системы и с экспрессией генов, которые ассоциируют с шизофренией.
Для этого использовали результаты позитронно-эмиссионной томографии и однофотонной эмиссионной компьютерной томографии здоровых добровольцев. Также проанализировали данные об активности 43 генов, которые связаны с шизофренией.
Пространственную экспрессию маркеров дофаминергичекой системы и выбранных генов сравнили с распределением амплитуд низкочастотных колебаний в полосатом теле.
Исследователи обнаружили ряд различий в работе полосатого тела между людьми с шизофренией и здоровыми добровольцами. Например, у больных была увеличена амплитуда низкочастотных колебаний, а также отличались (по сравнению с контрольной группой) связи полосатого тела с другими областями.
Алгоритм, который обучили на этих данных, отличал больных шизофренией с точностью более 80 процентов. Показатель не отличался от контрольных групп для всех исследованных психических заболеваний кроме биполярного расстройства — у людей с таким диагнозом коэффициент был ниже, чем в контроле.
Ang Li et al. / Nature Medicine, 2020
Различия во внешних проекциях стриатума больных шизофренией и здоровых людей. Синий – проекции у больных были выражены слабее, красный – сильнее
Ang Li et al. / Nature Medicine, 2020
Коэффициент аномальности полосатого тела значительно различался среди больных. Оказалось, что этот показатель связан с восприимчивостью к лечению антипсихотическими препаратами. Это наблюдение может помочь индивидуально подбирать терапию, так как зачастую невосприимчивость к антипсихотикам обнаруживают только после неудачи с несколькими препаратами и их концентрациями.
Как маркеры дофаминергической системы, так и гены, которые связаны с риском шизофрении, были активны в тех же зонах полосатого тела, в которых амплитуда низкочастотных колебаний была высока. Значит, оба эти механизма могут лежать в основе изменений активности полосатого тела при шизофрении.
Ученые давно ищут структурные и молекулярные особенности мозга, характерные для шизофрении. Выявили всего 413 генов, которые связаны с этим заболеванием.
Кроме полосатого тела, в участии в развитии шизофрении подозревают мозолистое тело, а изменения эта болезнь вызывает и в ряде других отделов мозга.
Подробно про шизофрению, ее причины, симптомы и лечение можно почитать в материале «Безумие в наследство» (здесь его продолжение).
Алиса Бахарева
Симптомы нарушения работы базальных ядер
При повреждении или нарушении функции базальных ядер возникают симптомы, связанные с нарушением координации и точности движений. Такие явления именуются собирательным понятием «дискинезия», которое, в свою очередь, подразделяется на два подвида патологий: гиперкинетические и гипокинетические нарушения. К симптомам нарушения деятельности базальных ганглиев относится:
- акинезия;
- обеднение движений;
- произвольные движения;
- замедленные движения;
- повышение и понижение тонуса мышц;
- тремор мускулов в состоянии относительного покоя;
- десинхронизация движений, отсутствие между ними координации;
- обеднение мимики, скандированный язык;
- беспорядочные и аритмические движения мелких мышц кисти или пальцев, всей конечности или части целого тела;
- патологические непривычные для больного позы.
В основе большинства проявлений патологической работы базальных ядер лежит нарушения нормального функционирования нейромедиаторных систем мозга, в частности – дофаминэргической модулирующей системы мозга. Кроме этого, однако, причинами возникновения симптомов служат перенесенные инфекции, механические травмы головного мозга или врожденные патологии.
Гиперкинез
Заболевание обусловлено неконтролируемыми самопроизвольными движениями группы мышц. Недуг возникает на фоне поражения нервных клеток базальных ядер, в частности, хвостатого тела и внутренней капсулы. Провоцирующие факторы:
- детский церебральный паралич;
- интоксикация;
- стресс;
- энцефалит;
- врождённые патологии;
- травмы головы;
- болезни эндокринной системы.
Общие симптомы:
- непроизвольное сокращение мышц;
- тахикардия;
- частое моргание;
- зажмуривание глаз;
- спазмы мышц лица;
- высовывание языка;
- боли в нижней части живота.
Осложнения при гиперкинезе приводят к ограничению подвижности суставов. Болезнь неизлечима, но при помощи медикаментозных средств и физиотерапии можно уменьшить симптомы и облегчить состояние человека.
Диагностика и прогноз патологии
Диагностикой, кроме врачей-неврологов, занимаются врачи остальных кабинетов (функциональная диагностика). Основными методам выявления болезней базальных ядер являются:
- анализ жизни больного, его анамнез;
- объективный внешний неврологический осмотр и физикальное исследование;
- магнитно-резонансная и компьютерная томография;
- исследование структуры сосудов и состояния кровообращения в головном мозгу;
- УЗИ;
- визуальные методы исследования структур головного мозга;
- электроэнцефалография;
Прогностические данные зависят от множества факторов, таких как пол, возраст, общая конституция больного, момент заболевания и момент диагностирования, его генетических склонностей, течения и эффективности лечения, собственно патологий и ее деструктивных свойств. По данным статистики – 50% заболеваний базальных ядер имеют неблагоприятный прогноз. Остальная же половина случаев имеет шанс на адаптацию, реабилитацию и нормальную жизнь в обществе.
Не нашли подходящий ответ?Найдите врача и задайте ему вопрос!
Последствия патологий базальных ганглий
Дальнейший прогноз зависит от ряда факторов: пол, возраст, степень развития заболевания, генетические особенности, физиология организма. Каждый случай индивидуален. Но статистика не утешительна – в среднем более половины патологических состояний базальных ядер имеют неблагоприятное течение.
Симптомы поражения сопровождают человека в последующей жизни и становятся причинами инвалидизации. Прогрессирование болезни можно остановить соответствующими лекарственными препаратами, физиотерапевтическими процедурами, спортивными упражнениями, отсутствием стрессов.
Адаптационные силы организма велики. Необходимы правильно подобранные приемы реабилитации. С ними жизнь пациента может стать полноценной. Либо выйти на более качественный уровень.
Что собой представляют базальные ядра
Базальные ядра головного мозга – это функционально и анатомически связанные скопления серого вещества в глубоких отделах мозга. Эти структуры углублены в белое вещество, выполняющее функцию передатчика информации. Еще в эмбрионе базальные ядра развиваются из ганглиозного бугорка, формируясь затем в зрелые мозговые структуры, выполняющие строго специфические функции в нервной системе.
Важно Новейшие методы терапии рассеянного склероза
Базальные ганглии расположены на линии основания головного мозга, находясь сбоку от таламуса. Анатомически высокоспецифичные ядра входят в совокупность переднего мозга, что располагается на грани лобных долей и стволовым отделом мозга. Часто под термином «подкорка» специалисты подразумевают именно набор базальных ядер головного мозга.
Анатомы различают три сосредоточения серого вещества:
- Полосатое тело. Под этой структурой разумеется набор двух не совсем дифференцированных частей: Хвостатое ядро головного мозга. Имеет утолщенную головку, образующую спереди одну из стенок бокового желудочка мозга. Тонкий же хвост ядра прилегает ко дну латерального желудочка. Также хвостатое ядро граничит с таламусом.
- Чечевицеобразное ядро. Эта структура идет параллельно предыдущему скоплению серого вещества и ближе к окончанию с ним же и сливается, образуя полосатое тело. Чечевицеобразное ядро состоит из двух белых прослоек, каждая из которых получило свое название (бледный шар, скорлупа).
Corpus striatum получило такое свое название из-за чередования расположения на его сером веществе белых полосок. В последнее время чечевицеобразное ядро утратило свой функциональный смысл, и называют его исключительно в топографическом разумении. Чечевицеобразное ядро, как функциональную компиляцию, называют стриопаллидарной системой.
- Ограда или claustrum – это малая тонкая серая пластинка, расположенная у скорлупы полосатого тела.
- Миндалевидное тело. Это ядро расположено под скорлупой. Также эта структура относится лимбической системе мозга. Под миндалиной разумеют, как правило, несколько отдельных функциональных образований, но их объединили по причине близкого расположения. Такая область мозга обладает множественной связной системой с другими структурами мозга, в частности с гипоталамусом, таламусом и черепно-мозговыми нервами.
Сосредоточением из белого вещества является:
- Внутренняя капсула — белое вещество между таламусом и чечевицеобразным ядром
- Наружная капсула — белое вещество между чечевицей и оградой
- Самая наружная капсула — белое вещество между оградой и островком
Внутренняя капсула делится на 3 части и содержит следующие проводящие пути:
Передняя ножка:
- Фронтоталамический путь — связь между корой лобной доли и медиадерзальным ядром таламуса
- Фронтомостовой путь — связь между корой лобной доли и мостом головного мозга
Колено:
Корково-ядерный путь — связь между ядрами двигательной коры и ядрами двигательно-черепных нервов
Задняя ножка:
- Корково-спинномозговой путь — проводит двигательные импульсы от коры большого мозга к ядрам двигательных рогов спинного мозга
- Таламо-теменные волокна — Аксоны нейронов таламуса связаны с постцентральной извилинной
- Височно-теменно-затылочно-мостовой пучок — связывает ядра моста с долями головного мозга
- Слуховая лучистость
- Зрительная лучистость
Сравнительная анатомия
Исследования развития базальных ядер в фило- и онтогенезе показали, что хвостатое ядро и скорлупа чечевицеобразного ядра (putamen) развиваются из ганглиозного бугра, расположенного на нижней стенке бокового желудочка. Они представляют единую клеточную массу, которая у высших позвоночных разделяется волокнами передней ножки внутренней капсулы (crus anterior capsulae internae). Ввиду общности происхождения и сохраняющегося в течение всей жизни соединения головки хвостатого ядра и переднего отдела скорлупы полосками серого вещества, чередующимися с белыми пучками волокон внутренней капсулы, хвостатое ядро и скорлупу объединяют под названием «полосатое тело» (corpus striatum), или «стриатум» (striatum). Так как полосатое тело является филогенетически более поздним образованием, чем медиально расположенная часть чечевицеобразного ядра — бледный шар, состоящий из наружного и внутреннего члеников, его называют «неостриатум» (neostriatum), а бледный шар — «палеостриатум» (paleostriatum). Последний в наст, время выделяют в особую морфологическую единицу под названием «паллидум» (pallidum).
Исследования Л. А. Кукуева (1968) показывают, что наружный и внутренний членики бледного шара имеют различное происхождение. Наружный членик, как и скорлупа, развивается из ганглиозного бугра конечного мозга; внутренний членик — из промежуточного мозга и гомологичен энтопедункулярному ядру субприматов (расположено у них в мозге над зрительным трактом, то есть его топография сходна с топографией внутреннего членика бледного шара на ранних стадиях развития зародыша человека). В процессе как филогенетического, так и онтогенетического развития происходит перемещение внутреннего членика по направлению к наружному, в результате чего они сближаются.
Базальные ядра различно представлены в мозге разных классов позвоночных животных. Так, у рыб и амфибий базальные ядра представлены лишь бледным шаром, хвостатое ядро и скорлупа появляются впервые у рептилий, особенно хорошо они развиты у птиц. У млекопитающих (хищных и грызунов) бледный шар представлен единым образованием, у человека он состоит из двух члеников, разделенных прослойкой белого вещества. Размеры полосатого тела уменьшаются по мере развития головного мозга в филогенезе. Из млекопитающих у низших насекомоядных оно составляет 8% от величины всего конечного мозга, у тупайя и полуобезьян — 7%, а у обезьян — 6%.
Ствол мозга
Ствол мозга состоит из продолговатого мозга, моста и среднего мозга и содержит двигательные и чувствительные ядра, исполняющие моторные и сенсорные функции для лица и головы тем же самым путём, которым спинной мозг выполняет эти же функции по отношению к шее, туловищу и конечностям. В то же время ствол мозга выполняет множество специальных функций (в том числе функции контроля: дыханиясердечно-сосудистой системыЖКТмногих стереотипных движений теларавновесиядвижения глаз) и служит как бы узловой станцией для «командных сигналов» от вышележащих центров. В контроле над движениями тела и его равновесием важную роль играют вестибулярные и ретикулярные ядра ствола мозга.
Ретикулярныеядра
. На рис. 14–3В показано расположение ретикулярных ядер. Их подразделяют на ретикулярные ядра моста и ретикулярные ядра продолговатого мозга. Эти две системы ядер функционируют антагонистически по отношению друг к другу:
ядрамоставозбуждаютантигравитационные мышцы
,
ядрапродолговатогомозга тормозятих
.
Ретикулярныеядрамоста
передают возбуждающие сигналы в спинной мозг через
мосторетикулоспинальныйтракт
, локализованный в переднем столбе спинного мозга. Волокна этого тракта активируют мотонейроны спинного мозга, которые посылают возбуждающие импульсы к мышцам позвоночного столба и разгибательным мышцам конечностей. Ретикулярные ядра моста имеют высокую возбудимость. Вдобавок они получают возбуждающие импульсы как от вестибулярных ядер, так и от глубоких ядер мозжечка. Таким образом возбуждающая ретикулярная система моста вызывает мощную активацию антигравитационных мышц всего тела.
Ретикулярныеядрапродолговатогомозга
передают тормозящие сигналы к тем же самым антигравитационным нейронам спинного мозга, но через другой путь —
ретикулоспинальныйтрактпродолговатогомозга
, расположенный в боковых столбах спинного мозга. Ретикулярные ядра продолговатого мозга получают коллатерали из кортикоспинального тракта, руброспинального тракта и других двигательных путей. Нормальная активность тормозной ретикулярной системы продолговатого мозга поддерживает равновесие с активностью возбуждающей системы ретикулярной формации моста, в результате мускулатура тела не имеет чрезмерного напряжения. Команды из верхних отделов мозга могут прервать тормозное влияние системы продолговатого мозга, когда мозгу необходимо возбуждение системы моста для контроля вертикального положения тела. Возбуждение ретикулярной системы продолговатого мозга может затормозить антигравитационные мышцы в некоторых частях тела для выполнения каких-либо необходимых движений.
Возбуждающие и тормозящие ретикулярные ядра — обязательная часть контролирующей системы, которой управляют сигналы из моторной коры; кроме того, эти ядра создают основной уровень тонического сокращения для противостояния силам гравитации и могут тормозить отдельные группы мышц для обеспечения других функций.
Вестибулярныеядра
функционально связаны с ретикулярными ядрами моста, возбуждая антигравитационные мышцы.
Латеральныевестибулярныеядра
передают сильные возбуждающие сигналы в латеpальный и медиальный пpеддвеpно–спинномозговой путь. Без участия вестибулярных ядер ретикулярная система моста значительно ослабляет своё возбуждающее влияние на гравитационную мускулатуру шеи, спины, верхних и нижних конечностей. Специфическая роль вестибулярных ядер заключается в селективном контроле возбуждающих сигналов, поступающих из вестибулярного аппарата к различным антигравитационным мышцам для поддержания равновесия.
Важно Инструкция по применению ципралекса, его аналоги и отзывы пациентов и врачей
Для каждого человека важно знать, как он устроен. И одним из самых интересных органов для изучения является головной мозг, который до сих пор не удалось познать полностью
Немногие после курса школьной биологии помнят функции среднего мозга и назначение. Приходит необходимость разобраться в сложных медицинских терминах уже в зрелом возрасте, когда человек начинает посещать врачей или сам собирается поступить в медицинский ВУЗ.
Если вы желаете узнать, что такое средний мозг и его расположение, необязательно изучать сложные медицинские энциклопедии и учиться в медицинском институте. Сознательные пациенты перед походом в медучреждение желают больше узнать о недуге, и какие функции выполняет больной орган. Тогда больничные процедуры не будут казаться такими пугающими и непонятными.
Анатомия головного мозга человека
Мозг разделён на два больших полушария, поверхность которых покрыта множеством извилин. Сзади располагается мозжечок. Ниже помещается ствол, переходящий в спинной мозг. Ствол и спинной мозг с помощью нервной системы подают команды мышцам и железам. А в обратном направлении к ним поступают сигналы от внешних и внутренних рецепторов.
Сверху головной мозг покрывает черепная коробка, защищающая его от внешнего воздействия. Кровь, поступающая через сонные артерии, снабжает мозг кислородом. Если по каким-то причинам происходит нарушение функционирования главного органа, то это приводит к тому, что человек переходит в вегетативное (растительное) состояние.
Как развивается средний мозг
Находящиеся в чреве своей матери дети должны пройти множество стадий развития. В течение эмбриональной стадии, средний головной мозг вырастает из небольшого пузырька и остается целостным на протяжении всей жизни. На всем протяжении развития в этой части появляются все новые клетки, они сжимают мозговой водопровод. При нарушениях на этом этапе, может развиться проблемы с мозговым водопроводом – частичная или полная закупорка Одно из опаснейших последствий – такая опасная болезнь, как гидроцефалия.
Полезная информация.
Каждый раз после того, как человек запоминает информацию, формируются нейронные связи. Это означает, что структуры различных отделов, в том числе, среднего мозга, постоянно меняется, он не замирает в определенном состоянии.
Физиология
Все подкорковые ядра опять же условно объединяются в две системы. Первая называется стриопаллидной системой, в состав которой включены:
- бледный шар;
- хвостатое ядро головного мозга;
- скорлупа.
Две последние структуры состоят из множества слоёв, благодаря чему их сгруппировали под именем стриатум. Бледный шар отличается более ярким, светлым цветом и не является слоистым.
Чечевицеобразное ядро образуется бледным шаром (располагается внутри) и скорлупой, которая образовывает её наружный слой. Ограда с миндалевидным телом являются составляющими лимбической системы головного мозга.
Рассмотрим подробнее, что собой представляют эти ядра мозга.
Хвостатое ядро
Парная составляющая головного мозга, относящаяся к полосатому телу. Место локализации – впереди от таламуса. Их отделяет полоса белого вещества, называемая внутренней капсулой. Его передняя часть имеет более массивную утолщённую структуру, головка структуры примыкает к чечевицеобразному ядру.
По структуре оно состоит из нейронов Гольджи и имеет следующие характеристики:
- их аксон очень тонкий, а дендриты (отростки) – короткие;
- нервные клетки имеют уменьшенные, в сравнении с нормальными, физические размеры.
Хвостатое ядро имеет тесные связи с множеством иных выделенных структур мозга и образует очень широкую сеть нейронов. Через них бледный шар и таламус взаимодействуют с сенсорными участками, создавая пути с замкнутыми контурами. Взаимодействует ганглий и с иными участками мозга, причём не все они лежат по соседству с ним.
Специалисты не имеют общего мнения по поводу того, какова функция хвостатого ядра. Это ещё раз подтверждает необоснованную, с научной точки зрения, теорию, что мозг является единой структурой, любая из его функций с лёгкостью выполняется любым участком. И это неоднократно доказано при исследованиях людей, пострадавших вследствие аварий, иных ЧП и болезней.
Наверняка известно, что он принимает участие в вегетативных функциях, играет важную роль в развитии познавательных способностей, координации и стимуляции двигательной активности.
Полосатое ядро состоит из чередующихся по большому счету в вертикальной плоскости слоев белого и серого веществ.
Чёрная субстанция
Составляющая системы, которая принимает наибольшее участие в координации движений и моторике, поддержке мышечного тонуса и управлении при соблюдении поз. Участвует во множестве вегетативных функций, таких как дыхание, сердечная деятельность, поддержка тонуса сосудов.
Физически субстанция является непрерывной полосой, как считалось на протяжении десятилетий, однако анатомические срезы показали, что она состоит из двух частей. Одна из них – приемник, который направляет дофамин полосатому телу, вторая – передатчик – служит транспортной артерией для передачи сигналов от базальных ганглиев иным отделам мозга, коих насчитывается более десятка.
Чечевицеобразное тело
Место его дислокации между хвостатым ядром и таламусом, кои, как говорилось, разделяются наружной капсулой. Спереди структуры она сливается с головкой хвостатого ядра, отчего её фронтальный срез имеет клинообразную форму.
Это ядро состоит из отделов, разделённых тончайшей плёнкой белого вещества:
- скорлупа – более темная наружная часть;
- бледный шар.
Последний сильно разнится со скорлупой строением и состоит из клеток Гольджи I-го типа, кои преобладают в человеческой нервной системе, и больше по размеру, чем их II-я разновидность. По предположениям нейрофизиологов, он является более архаичной мозговой структурой, чем иные составляющие ядра головного мозга.
Иные узлы
Ограда – тончайший слой серого вещества между скорлупой и островком, вокруг которого находится белая субстанция.
Также базальные ядра представляются и миндалевидным телом, находящимся под скорлупой в височной области головы. Считается, но наверняка не известно, что эта часть относится к обонятельной системе. В ней же заканчиваются нервные волокна, идущие из обонятельной доли.
Базальные ганглии строение, развитие, функции
В статье поговорим о базальных ганглиях
Что это такое и какую роль эта структура играет в здоровье человека? Все вопросы будут подробно рассмотрены в статье, после чего вы поймёте важность абсолютно каждой детали в вашем теле и голове
Базальные ганглии: физиология
Расположены эти ядра возле полушарий головного мозга. Они имеют очень много отростков большой длины, которые называются аксонами. Благодаря им информация, то есть нервные импульсы, передается к разным структурам мозга.
Базальными ядрами могут считаться красные и хвостатые ядра, бледный шар, скорлупа, черное вещество и ретикулярная формация.
Строение базальных ганглий разнообразное. В основном по этой классификации их делят на те, которые относятся к экстрапирамидной и лимбической системе. Обе эти системы имеют огромное влияние на работу головного мозга, находятся с ним в тесном взаимодействии. Они оказывают воздействие на таламус, теменные и лобные доли. Экстрапирамидная сеть состоит из базальных ганглий. Ей полностью пронизаны подкорковые части мозга, и она оказывает важнейшее влияние на работу всех функций организма человека. Эти скромные образования очень часто остаются недооценёнными, а ведь их работа ещё полностью не изучена.
Функций базальных ганглий не так много, но они существенны. Как мы уже знаем, они сильно связаны со всеми остальными структурами мозга. Собственно, из понимания этого утверждения и вытекают основные функции ядер:
- Контроль за осуществлением процессов по интеграции в высшей нервной деятельности.
- Влияние на работу вегетативной нервной системы.
- Регулирование двигательных процессов человека.
В чём участвуют?
Есть ряд процессов, в которых ядра принимают непосредственное участие. Базальные ганглии, строение, развитие и функции которых мы рассматриваем, участвуют в таких действиях:
- влияют на ловкость человека при использовании ножниц;
- точность забивания гвоздей;
- скорость реакции, ведение мяча, точность попадания в корзину и ловкость отбивания мяча при игре в баскетбол, футбол, волейбол;
- владение голосом во время пения;
- координация действий во время копания земли.
Новые исследования доказали, что базальные ганглии также могут влиять на тип движения:
- поддающиеся контролю или внезапные;
- повторяемые много раз или новые, совершенно неизвестные;
- простые односложные или последовательные и даже одновременные.
В обычной жизни базальные ядра просто передают импульсы, которые поступают от лобных долей, к другим структурам мозга. Целью является целенаправленное выполнение известных действий без нагрузки на ЦНС. Однако в опасных ситуациях ганглии переключаются и позволяют человеку автоматически принять наиболее оптимальное решение.
Поражения базальных ганглиев могут быть очень разными. Рассмотрим некоторые из них. Это дегенеративные поражения мозга человека (например, болезнь Паркинсона или хорея Гентингтона). Это могут быть наследственные генетические болезни, которые связаны с нарушением обмена веществ. Патологии, характеризующиеся сбоями в работе ферментных систем. Заболевания щитовидной железы тоже могут происходить из-за нарушений в работе ядер. Возможные патологии, возникающие вследствие отравления марганцем. Влиять на работу базальных ядер могут опухоли мозга, и, пожалуй, это самая неприятная ситуация.
Патологии при поражении
В 1896 году Ч. Шеррингтон (Ch. S. Sherrington) описал крайнее напряжение мышц у животного при обрыве нисходящих связей красного ядра — . Если перерезать ствол мозга между красными и вестибулярными ядрами, то возникает максимальное напряжение мышц-разгибателей конечностей, шеи, спины.
Важно Синапс
Эти мышцы противодействуют земному притяжению, а значит, такая картина должна быть связана с вестибулярной системой. И действительно, вестибулярное ядро Дейтерса активирует разгибателей. Влияние красного ядра на эти нейроны и ядро Дейтерса тормозит их активность. То есть тонус мышц создаётся совместной работой нескольких ядер.
Децеребрационная ригидность у человека встречается после тяжёлых или черепно-мозговых травм и является плохим признаком.
Она выглядит следующим образом: руки разогнуты, будто натянуты, и приведены к телу, ладони вывернуты наружу (пронированы), пальцы согнуты, но большие пальцы отведены. Ноги вытянуты и приведены друг к другу, стопы повёрнуты внутрь. Пальцы ног согнуты, как в подвешенном положении. Челюсти сжаты. Её описали в 1912 году голландские врачи Р. Магнус и А. Клейн (R. Magnus, A. de Klein).
Работа головного мозга может быть нарушена при травмах, инфекционных и сосудистых поражениях мозга, опухолевых процессах, агрессии иммунной системы.
Повреждения красного ядра и его связей у человека проявляются не только децеребрационной ригидностью, но и менее тяжёлой патологией. В среднем мозге находятся структуры, от которых начинаются нервы, управляющие мышцами глазного яблока, зрачка и мышцей, поднимающей верхнее веко. Поэтому поражение красного ядра может сочетаться с «глазными» симптомами.
Такое бывает при синдроме Клода и синдроме Бенедикта. Часто они развиваются после сосудистых катастроф (инсульта).
Синдром Клода был описан французским неврологом и психиатром Анри Клодом в 1912 году. В случае синдрома Клода поражаются нижняя часть красного ядра, эфферентные волокна от мозжечка к таламусу и глазодвигательный нерв.
Из-за повреждённого глазодвигательного нерва на стороне поражения опускается верхнее веко, расширяется зрачок и появляется расходящееся косоглазие. На другой стороне тела возникают дрожание рук при движении к цели (интенционный тремор), слабость мышц.
Опущение века и косоглазие при синдроме Клода
При этом синдроме в очаг поражения вовлекаются красное ядро, его связи с мозжечком и структуры глазодвигательного нерва. На повреждённой стороне расширяется зрачок, на противоположной стороне возникают интенционный и беспорядочные или извивающиеся движения конечностей (хореоатетоз).
Латинское название: nucleus ruber.
В среднем мозге красные ядра находятся в самом центре. Если сделать горизонтальный срез через средний мозг, то на диагонали между и мы увидим два бледно-розовых пятна. Это и будут красные ядра. Считается что своим цветом они обязаны железу, которое содержится в них в двух разных формах — гемоглобин и ферритин.
На следующем скриншоте вы можете видеть сагиттальный срез ствола мозга. Низ красного ядра лежит на восходящих волокнах верхних ножек мозжечка на уровне верха нижнего . Сверху — они доходят до уровня гипоталамуса.
Более подробно ознакомиться с тем, где располагается красное ядро можно на нашей .
Красное ядро — моторное, отвечает за тонус мышц и рефлексы.
Выделяют две части:
- задняя крупноклеточная (магноцеллюлярная) — меньше развита у человека, чем у других позвоночных, т.к. у людей значительно сильнее развита кора головного мозга, которая забирает часть функций у крупноклеточной части.
- передняя мелкоклеточная (парвоцеллюлярная) — передает информацию от моторной коры к мозжечку через оливы.
Некоторые исследователи выделяют отдельно заднемедиальную часть.
Афферентные связи базальных ганглиев.
Большая часть афферентных сигналов, приходящих к базальным ганглиям поступает в полосатое тело. Эти сигналы исходят почти исключительно из трех источников:
— от всех областей коры больших полушарий;
— от внутрипластинчатых ядер таламуса;
— от черной субстанции ( по дофаминэргическому пути).
Эфферентные волокна от стриатума идут к бледному шару и черной субстанции. От последней начинается не только дофаминэргический путь к полосатому телу, но и пути, идущие к таламусу.
От внутреннего отдела бледного шара берет начало самый важный из всех эфферентных трактов базальных ганглиев, заканчивающийся в таламусе, а так же в крыше среднего мозга. Посредством стволовых образований, с которыми связаны базальные ганглии, центробежные импульсы следуют к сегментарным двигательным аппаратам и мускулатуре по нисходящим проводникам.
— от красных ядер — по руброспинальному тракту;
— от ядра Даркшевича – по заднему продольному пучку к ядрам 3, 4,6 нервов и через его посредство к ядру вестибулярного нерва;
— от ядра вестибулярного нерва – по вестибулоспинальному тракту;
— от четверохолмия — по тектоспинальному тракту;
— от ретикулярной формации — по ретикулоспинальному тракту.
Таким образом, базальные ганглии играют, главным образом, роль промежуточного звена в цепи, связываемой двигательные области коры со всеми остальными ее областями.
Функции
У человека руброспинальный тракт идущий от красного ядра отчасти контролирует походку и движения плечевого пояса. «Отчасти» означает, что он контролирует только крупные движения. За мелкую моторику отвечает кортикоспинальный тракт. Если его «отключить» и оставить только руброспинальный, то движения такого человека станут резкими, размашистыми.
Также отмечу, что руброспинальный тракт отвечает за рефлекторые движения.
Опыты на животных показывают, что электрическая стимуляция руброспинального тракта ведет к возбуждению мотонейронов мышц сгибателей и к ингибированию мотонейронов мышц-разгибателей. Таким образом при перерезании тракта на уровне среднего мозга конечности выпрямляются и остаются напряженными в таком положении. голова запрокидывается.
Болезнь Паркинсона
При заболевании происходят дегенеративные изменения в нейронах, что приводит к потере контроля над движениями. Клетки перестают вырабатывать дофамин, который отвечает за передачу импульсов между хвостатым ядром и чёрным веществом. Болезнь считается неизлечимой и носит хронический характер.
Начальные симптомы:
- изменение почерка;
- замедленность движений;
- тремор конечностей;
- депрессия;
- напряжённость мышц;
- неразборчивость речи;
- нарушение походки, осанки;
- застывшее выражение лица;
- забывчивость.
При появлении одного из симптомов следует обратиться к неврологу.