Автор Зыбина А.М.
Нервная система осуществляет интеграцию всего организма в единый оркестр, осуществляет его взаимодействие с окружающей средой, произвольные движения (вместе с мышечной системой), и все проявления умственной деятельности. Все функции нервной системы осуществляет сеть нейронов, связанных друг с другом посредством синапсов. Их жизнеспособность поддерживают глиальные клетки.
Нервная система по анатомическому расположению подразделяется на центральную (ЦНС) и периферическую (ПНС). ЦНС состоит из головного и спинного мозга. ПНС – из нервов (пучок отростков нервных клеток) и нервных узлов, или ганглиев (скопление тел нейронов), расположенных вне нервной системы.
По функциям в нервной системе выделяют соматический (анимальный, СомНС) и вегетативный (автономный, ВНС) отделы. СомНС управляет произвольными сокращениями скелетных мышц. ВНС управляет деятельностью внутренних органов. Ее подразделяют на два отдела: симпатический (СНС) и парасимпатический (ПНС). И СомНС, и ВНС имеют как центральный, так и периферический отделы.
Структура ЦНС
ЦНС состоит из головного и спинного мозга, каждый из которых имеет белое и серое вещество. Белое вещество – это проводящие пути, миелинизированные и немилинизированные аксоны. Миелин белый, что придает соответствующий оттенок ткани. Серое вещество состоит из тел нейронов. Оно может располагаться в нервной системе в виде трубки (спинной мозг); ядер, или ганглиев (скопления тел нейронов в толще белого вещества), а также коры (серое вещество на поверхности белого).
Спинной мозг располагается в позвоночном канале и его масса составляет 40 г. На его боковой поверхности сзади входят задние корешки, несущие афферентную (чувствительную, к мозгу) информацию, а спереди выходят передние корешки, несущие эфферентную (двигательную, от мозга) информацию. Участок спинного мозга, соответствующий каждой паре корешков, называется сегментом. Сегменты названы по месту выхода корешков из позвоночника. Спинной мозг имеет 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый сегменты. В целом количество сегментов спинного мозга соответствует числу позвонков. Исключениями является шейный отдел, где на 7 позвонков приходится 8 сегментов; и копчиковый, где на 3-4 позвонка 1 сегмент (рис. 1).
Рис. 1. Строение и расположение сегментов спинного мозга.
На поперечном срезе спинного мозга в центре расположено серое вещество, окруженное белым. Серое вещество имеет форму бабочки, в центре которой располагается спинномозговое отверстие, заполненное ликвором (спинномозговая жидкость). Бабочка состоит из примерно 13 млн нейронов и имеет передние и задние рога (рис. 2б, 3). В средних отделах спинного мозга также хорошо выражены средние рога. В задние рога по заднему корешку поступает чувствительная (сенсорная) информация к интернейронам (вставочным нейронам). В передних рогах располагаются мотонейроны (моторные нейроны), посылающие двигательную информацию к мышцам, именно их аксоны образуют передний корешок. В средних рогах располагаются нейроны центральных отделов ВНС.
Спинной мозг работает по рефлекторному принципу. Рефлекс – это стереотипная ответная реакция организма на любое (внешнее или внутреннее) воздействие. Простейшим рефлексом является моносинаптический. Для его осуществления достаточно двух нейронов. Примером такого рефлекса является коленный рефлекс. При раздражении рецептора, импульс по дендриту передается к телу нейрона, расположенного в нервном узле рядом со спинным мозгом. Аксон этого нейрона входит в спинной мозг через задние корешки и образует синапс с мотонейроном в передних рогах. Аксон мотонейрона выходит через передние корешки и направляется к эффекторному органу, где изменяет активность самого органа (рис. 50а). Полисинаптический рефлекс включает дополнительное звено в виде одного или нескольких вставочных нейронов между ганглионарным и моторным нейронами. Интернейроны могут дополнительно обрабатывать информацию, сопоставлять ее с другими стимулами и внутренним состоянием организма, принимая решение о том, как стоит реагировать на раздражитель.
Рис. 2. Рефлекторная дуга (а) и гистологический срез (б) спинного мозга.
Рис. 3. Схема строения среза спинного мозга.
Белое вещество спинного мозга включает проводящие пути. Оно разделено бабочкой на передние, задние и боковые канатики (рис. 3).
В задних канатиках проходят восходящие тракты, по которым информация передается от ПНС к спинному и далее к головному мозгу. В передних рогах спинного мозга проходят нисходящие тракты, по которым информация идет от головного мозга к спинному, а от последнего – к ПНС. В боковых рогах кзади располагаются восходящие, а кпереди – нисходящие тракты.
Головной мозг расположен в черепе и состоит из 5 отделов. Его масса в среднем составляет 1,5 кг и он содержит до 100 млрд нейронов. От головного мозга отходят 12 пар черепно-мозговых нервов (ЧМН).
Продолговатый мозг является местом перехода спинного мозга в головной. Его длина составляет примерно 25 мм. В нижней части продолговатого мозга еще можно различить бабочку, в верхних отделах тела нейронов собраны в ядра. От продолговатого мозга отходят IX-XII пары ЧМН (рис.5) и в нем залегают соответствующие ядра. Эти нервы отвечают за движение и чувствительность глотки, языка и шеи. В продолговатом мозге располагается крупнейший центр парасимпатической нервной системы, который через Х нерв (вагус, блуждающий нерв) контролирует деятельность всех внутренних органов. В продолговатом мозге располагаются центры регуляции дыхания и жизненно важных рефлексов, таких как чихание и кашель. Здесь расположено ядро оливы, которая отвечает за равновесие. Через продолговатый мозг проходят все тракты, идущие от спинного мозга к головному.
Задний мозг состоит из варолиевого моста и мозжечка. Варолиев мост служит продолжением продолговатого мозга. Он содержит множество белого вещества, связывающего мозжечок с остальным мозгом. Это белое вещество образует валик на нижней стороне моста, благодаря чему его легко отличить. Мост вместе с продолговатым мозгом образуют дно 4 желудочка головного мозга (продолжение и расширение спинномозгового канала). От моста отходят V-VIII ЧМН. Здесь залегают слуховые и вестибулярные ядра, ядра, иннервирующие чувствительность и мышцы лица (в том числе и мимические). В мосту находится голубое пятно, отвечающее за регуляцию сна.
Рис. 4. Основные отделы головного мозга.
Рис. 5. Черепно-мозговые нервы. I-обонятельный, II-зрительный, III-глазодвигательный, IV-блоковый, V-тройничный, VI-отводящий, VII-лицевой, VIII-преддверно-улитковый, IX-языкоглоточный, X-блуждающий, XI-добавочный, XII-подъязычный.
Мозжечок хорошо развит у человека в связи с прямохождением и мелкой моторикой рук. Эта часть мозга отвечает за поддержание позы, равновесия, двигательное обучение, а также некоторые двигательные рефлексы. Мозжечок имеет корковое строение. Кора мозжечка состоит из трех слоев и разделена на два полушария червем. Под корой находится белое вещество, среди которого располагаются 3 пары ядер мозжечка. Для осуществления своих функций, он получает информацию от вестибулярного аппарата, оливы и других отделов двигательной системы человека.
Рис. 6. Внешнее строение (а) и гистологический срез (б) коры мозжечка.
Средний мозг состоит из ножек мозга и крыши (рис. 7). В центре спинного мозга проходит Сильвиев водопровод, в который соединяет III и IV желудочки. От среднего мозга отходит III и IV пары ЧМН. Эти нервы контролируют движения глазных яблок. III нерв содержит парасимпатические волокна, контролирующие ширину зрачка. В среднем мозге располагаются элементы двигательной системы: красное ядро и черная субстанция. На крыше головного мозга находится четверохолмие. В вернее двухолмие поступает зрительная информация, в нижнее – слуховая. Это необходимо для осуществления ориентировочного рефлекса.
Рис. 7. Внешний вид (а) и срез (б) среднего мозга.
Продолговатый мозг, мост и средний мозг вместе образуют ствол мозга. Через весь ствол проходит ретикулярная формация, регулирующая общий уровень активности головного мозга.
Промежуточный мозг состоит из таламуса, гипоталамуса, гипофиза и эпифиза. Здесь располагается III желудочек мозга. Он служит местом отхождения II ЧМН. Гипофиз – это железа, через которую нервная система контролирует гуморальную. Эпифиз также является железой, регулирующей циркадные ритмы. Таламус фильтрует информацию, поступающую в кору и убирает незаначимые повторяющиеся сенсорные стимулы (стук сердца, работа ЖКТ, нос в поле зрения, прикосновение одежды и т. д.) Кроме того, в таламусе имеются ядра лимбической системы (формируют настроение), двигательные и ассоциативные ядра. Гипоталамус контролирует деятельность гипофиза, а также регулирует внутреннее состояние организма. В нем находятся центры голода, жажды, полового поведения, удовольствия, неудовольствия и т. д. Таким образом, основной функцией гипоталамуса является поддержание гомеостаза всего организма.
Конечный (передний) мозг состоит из коры больших полушарий и базальных ганглиев (ядер). Под корой симметрично расположены I и II желудочки мозга. Ее площадь составляет около 220 см2, она образует борозды и извилины (рис. 8). Она состоит из 6 слоев. Полушария между собой соединены мозолистым телом – валиком белого вещества. Кора больших полушарий осуществляет обработку сенсорной информации, формирование произвольных движений, память и высшую нервную деятельность. К обонятельным луковицам подходит I ЧМН. Базальные ганглии – это ядра серого вещества, расположенные в толще белого. Они играют важную роль в совершении произвольных движений, двигательном обучении и формировании эмоций.
Рис. 8. Строение (а) и гистологические срезы (б, в) коры больших полушарий.
Распространение нервных импульсов
В результате эволюции нервной системы человека и других животных возникли сложные информационные сети, процессы в которых основаны на химических реакциях. Важнейшим элементом нервной системы являются специализированные клетки нейроны
. Нейроны состоят из компактного тела клетки, содержащего ядро и другие органеллы. От этого тела отходит несколько разветвленных отростков. Большинство таких отростков, называемых
дендритами
, служат точками контакта для приема сигналов от других нейронов. Один отросток, как правило самый длинный, называется
аксоном
и передает сигналы на другие нейроны. Конец аксона может многократно ветвиться, и каждая из этих более мелких ветвей способна соединиться со следующим нейроном.
Во внешнем слое аксона находится сложная структура, образованная множеством молекул, выступающих в роли каналов, по которым могут поступать ионы — как внутрь, так и наружу клетки. Один конец этих молекул, отклоняясь, присоединяется к атому-мишени. После этого энергия других частей клетки используется на то, чтобы вытолкнуть этот атом за пределы клетки, тогда как процесс, действующий в обратном направлении, вводит внутрь клетки другую молекулу. Наибольшее значение имеет молекулярный насос, который выводит из клетки ионы натрия и вводит в нее ионы калия (натрий-калиевый насос).
Когда клетка находится в покое и не проводит нервных импульсов, натрий-калиевый насос перемещает ионы калия внутрь клетки и выводит ионы натрия наружу (представьте себе клетку, содержащую пресную воду и окруженную соленой водой). Из-за такого дисбаланса разность потенциалов на мембране аксона достигает 70 милливольт (приблизительно 5% от напряжения обычной батарейки АА).
Однако при изменении состояния клетки и стимуляции аксона электрическим импульсом равновесие на мембране нарушается, и натрий-калиевый насос на короткое время начинает работать в обратном направлении. Положительно заряженные ионы натрия проникают внутрь аксона, а ионы калия откачиваются наружу. На мгновение внутренняя среда аксона приобретает положительный заряд. При этом каналы натрий-калиевого насоса деформируются, блокируя дальнейший приток натрия, а ионы калия продолжают выходить наружу, и исходная разность потенциалов восстанавливается. Тем временем ионы натрия распространяются внутри аксона, изменяя мембрану в нижней части аксона. При этом состояние расположенных ниже насосов меняется, способствуя дальнейшему распространению импульса. Резкое изменение напряжения, вызванное стремительными перемещения ионов натрия и калия, называют потенциалом действия
. При прохождении потенциала действия через определенную точку аксона, насосы включаются и восстанавливают состояние покоя.
Потенциал действия распространяется довольно медленно — не более доли дюйма за секунду. Для того чтобы увеличить скорость передачи импульса (поскольку, в конце концов, не годится, чтобы сигнал, посланный мозгом, достигал руки лишь через минуту), аксоны окружены оболочкой из миелина, препятствующей притоку и оттоку калия и натрия. Миелиновая оболочка не непрерывна — через определенные интервалы в ней есть разрывы, и нервный импульс перескакивает из одного «окна» в другое, за счет этого скорость передачи импульса возрастает.
Когда импульс достигает конца основной части тела аксона, его необходимо передать либо следующему нижележащему нейрону, либо, если речь идет о нейронах головного мозга, по многочисленным ответвлениям многим другим нейронам. Для такой передачи используется абсолютно иной процесс, нежели для передачи импульса вдоль аксона. Каждый нейрон отделен от своего соседа небольшой щелью, называемой синапсом
. Потенциал действия не может перескочить через эту щель, поэтому нужно найти какой-то другой способ для передачи импульса следующему нейрону. В конце каждого отростка имеются крошечные мешочки, называющие (
пресинаптическими
)
пузырьками
, в каждом из которых находятся особые соединения —
нейромедиаторы
. При поступлении потенциала действия из этих пузырьков высвобождаются молекулы нейромедиаторов, пересекающие синапс и присоединяющиеся к специфичным молекулярным рецепторам на мембране нижележащих нейронов. При присоединении нейромедиатора равновесие на мембране нейрона нарушается. Сейчас мы рассмотрим, возникает ли при таком нарушении равновесия новый потенциал действия (нейрофизиологи продолжают искать ответ на этот важный вопрос до сих пор).
После того как нейромедиаторы передадут нервный импульс от одного нейрона на следующий, они могут просто диффундировать, или подвергнуться химическому расщеплению, или вернуться обратно в свои пузырьки (этот процесс нескладно называется обратным захватом
). В конце XX века было сделано поразительное научное открытие — оказывается, лекарства, влияющие на выброс и обратный захват нейромедиаторов, могут коренным образом изменять психическое состояние человека. Прозак (Prozac*) и сходные с ним антидепрессанты блокируют обратный захват нейромедиатора серотонина. Складывается впечатление, что болезнь Паркинсона взаимосвязана с дефицитом нейромедиатора допамина в головном мозге. Исследователи, изучающие пограничные состояния в психиатрии, пытаются понять, как эти соединения влияют на человеческий рассудок.
По-прежнему нет ответа на фундаментальный вопрос о том, что же заставляет нейрон инициировать потенциал действия — выражаясь профессиональным языком нейрофизиологов, неясен механизм «запуска» нейрона. В этом отношении особенно интересны нейроны головного мозга, которые могут принимать нейромедиаторы, посланные тысячей соседей. Об обработке и интеграции этих импульсов почти ничего не известно, хотя над этой проблемой работают многие исследовательские группы. Нам известно лишь, что в нейроне осуществляется процесс интеграции поступающих импульсов и выносится решение, следует или нет инициировать потенциал действия и передавать импульс дальше. Этот фундаментальный процесс управляет функционированием всего головного мозга. Неудивительно, что эта величайшая загадка природы остается, по крайней мере сегодня, загадкой и для науки!
Вегетативная нервная система
ВНС включает два отдела симпатический (СНС) и парасимпатический (ПНС). СНС активируется во время стрессовой ситуации. Она увеличивает частоту сердечных сокращений, сужает сосуды, зрачки, увеличивает приток крови к мышцам и отток от органов ЖКТ. Центр СНС располагается в грудном и поясничном отделах спинного мозга (рис. 9). ПНС имеет обратный эффект. Она активируется в спокойной обстановке и приводит к приливу крови к органам ЖКТ, оттоку от мышц, снижению скорости сердцебиения, расширению зрачка и т. д. Центры ПНС расположены в продолговатом мозге, некоторых ядрах ЧМН и крестцовом отделе спинного мозга.
Главное отличие вегетативной рефлекторной дуги от соматической состоит в наличии еще одного синаптического переключения в ганглии после спинного мозга. Таким образом, вегетативный рефлекс начинается от рецептора, далее, чувствительный нейрон из ганглия передает информацию на нейрон средних рогов спинного мозга (или другой центр ВНС). Аксон вегетативного нейрона выходит через передние корешки и направляется в ганглий, где образует синапс с ганглионарным нейроном, отросток которого направляется непосредственно в эффекторный орган. Нервное волокно, идущее от спинного мозга к ганглию, называется преганглионарным. Нервное волокно, идущее от ганглия к органу, называется постганглионарным. Ганглии СНС располагаются рядом со спинным мозгом, поэтому преганглионарное волокно короткое, а постганглионарное – длинное. Ганглии ПНС расположены рядом или в стенке органа, поэтому у них преганглионарное волокно длинное, а постганглионарное – короткое. Эффекторным нейромедиатором симпатической нервной системы является норадреналин, а парасимпатической – ацетилхолин.
Рис. 9. Эффекты СНС и ПНС.
Рис. 10. Сравнение рефлекторной дуги соматического и вегетативного рефлекса.
# Анатомия человека